
48 UGDYMAS  KŪNO  KULTŪRA  SPORTAS Nr. 1 (84); 2012; 48–54; BIOMEDICINOS MOKSLAI

MEASURING THE COMPLEXITY OF  
A PHYSIOLOGICAL TIME SERIES:  

A REVIEW
Kazimieras Pukėnas, Jonas Poderys, Remigijus Gulbinas

Lithuanian Academy of Physical Education, Kaunas, Lithuania

ABSTRACT
Research background and hypothesis. Complex Systems Theory indeed is a solid basis for a scientific approach 

in the analysis of living, learning, and evolving systems. A number of different entropy estimators have been applied 
to physiological time series attempting to quantify its complexity. 

Research aim. The aim of the paper is to review most popular complexity estimators (entropies) applied in 
biological, medical, sport and exercise sciences and their performances.

Research results. Various measures of complexity were developed by scientists to compare time series and 
distinguish regular (e. g. periodic), chaotic, and random behavior. In this paper a brief review of most popular 
complexity estimators – Sample Entropy, Control Entropy, Spectral Entropy, Wavelet Entropy, Singular-Value 
Decomposition Entropy, Permutation Entropy, Base-Scale Entropy, Entropy based on Lempel-Ziv algorithm – and 
their performances is presented. In biological applications they are used to distinguish peculiarities in behavior of 
biological systems or may serve as non-invasive, objective means of determining physiological changes under steady 
or non-steady state conditions.

Discussion and conclusions. The choice of a particular entropy estimator is determined by the goal type, the 
capability of estimators in characterizing the constraints on a physiological time series, its robustness to noise 
considering the above-mentioned advantages and disadvantages of particular algorithms. It is difficult to apply 
analytical solutions in the analysis of behavior of living, learning, and evolving systems and new approaches and 
solutions remain on the agenda.
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INTRODUCTION

Complex Systems Theory indeed is a 
solid basis for a scientific approach in 
the analysis of living, learning, and 

evolving systems. A great number of details in the 
sequence of movements,  a variety of situations 
which the player is required to face, a wide range 
of techniques and skills which the handling of 
those situations encoupan consist the complexity 
which is required to understand in sport science. 
A hallmark of physiologic systems is their 
extraordinary complexity. This complexity arises 

from the interaction of a myriad of structural units 
and regulatory feedback loops that operate over a 
wide range of temporal and spatial scales, enabling 
the organism to adapt to the stresses of everyday 
life. The nonstationarity and nonlinearity of signals 
generated by living organisms defy traditional 
mechanistic approaches based on homeostasis 
and conventional biostatistical methodologies. 
Recognition that physiologic time series contain 
‘‘hidden information’’ has fueled growing interest 
in applying concepts and techniques from the 
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complexity theory, including fractal analysis and 
nonlinear dynamics, to a wide range of biomedical 
problems from molecular to whole body levels 
(Mayer, 2001; Goldberger et al., 2002). The use 
of non-linear methods for estimating variability 
in a given class of phenomena is very important 
to access the underlying nature of these processes. 
On the one hand, the variability in a time-series 
might entail relevant information on the underlying 
dynamics of the phenomenon, and, on the other 
hand, changes in the variability might inform 
us about deviations experienced by a system 
(Goldberger et al., 2002; Seely, Macklem, 2004). 
Once introduced, the family of statistics has 
been widely applied to a variety of physiological 
and clinical datasets such as genetic sequences, 
hormone pulsatility, respiratory patterns, heart 
rate variability, electrocardiography (ECG), 
electroencephalography (EEG), electromyography 
(EMG), datasets of gait analysis and postural control 
and other important physiological experimental 
time series and has shown its superiority to most 
complexity measures (Chena et al., 2009). Various 
measures of complexity were developed to compare 
time series and distinguish regular (e. g. periodic), 
chaotic, and random behavior. In this paper a brief 
review of most popular complexity estimators 
(entropies) applied in biological, medical, sport 
and exercise sciences and their performances are 
presented.

TECHNIQUES REVIEW

The main types of complexity parameters are: 
• Information theory estimates of complexity 

(entropies); 
• Fractal dimensions; 
• Chaos-based estimates of complexity 

(Lyapunov exponents, etc.).
They are all defined for typical orbits of 

presumably ergodic dynamical systems, and 
there are profound relations between these 
quantities (Bandt, Pompe, 2002). At the heart of 
such analysis, is the concept of quantifying the 
information evolution of transitions associated with 
probabilities assigned to each state, with a goal of 
providing single value (an entropy) to describe this 
information content (Bollt, Skufca, 2009). With 
an appropriate finite partition of labeled states,  

i = 1, 2, ..., n, and a probability measure pi on that 
partition, the well known Shannon entropy of a 
random variable is defined by:
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where H and D are, respectively, the entropy and the disequilibrium, �
�
 represents the probability 

associated to the state i; R is the number of states, and K is a positive normalization constant. 

The most popular entropy measures for complexity estimation of the physiological time 

series are: 

• Approximate entropy – ApEn (Sample Entropy – SampEn); 

• Control Entropy – CE; 

• Spectral Entropy – SE; 
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• Permutation Entropy – PE; 
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• Lempel-Ziv algorithm. 
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where H and D are, respectively, the entropy and 
the disequilibrium, pi represents the probability 
associated to the state i; R is the number of states, 
and K is a positive normalization constant.

The most popular entropy measures for 
complexity estimation of the physiological time 
series are:

• Approximate entropy – ApEn (Sample 
Entropy – SampEn);

• Control Entropy – CE;
• Spectral Entropy – SE;
• Wavelet Entropy – WE;
• Singular-Value Decomposition Entropy – 

SVDEn;
• Permutation Entropy – PE;
• Base-Scale Entropy;
• Lempel-Ziv algorithm.
Sample Entropy (SampEn). Sample Entropy 

provides a characterization of time series 
complexity in terms of their regularity. SampEn 
(m, r, N) is precisely the negative natural logarithm 
of the conditional probability that a dataset of 
length N, having repeated itself within a tolerance 
r for m points, will also repeat itself for m + 1 
points, without allowing self-matches  (Richmann, 
Moorman, 2000):
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L – length of time series; �– time delay; d– the embedding dimension; �∙�� denotes the transpose 

of a real matrix. Taking the standard singular value decomposition on the covariance matrix of 

reconstructed phase space matrix: 

R = UΛV
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,    (16) 

the SVDEn is computed via the equation (Sabatini, 2000): 
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where �
�
 – normalized k-th eigenvalue ; K– number of eigenvalues. 

In essence, similar to the Spectral Entropy, the SVDEn measure estimates the deviation 

of the singular values away from a uniform distribution – more complex systems are 

characterized by a spread of energy away from the first singular values. 

Permutation Entropy (PE). This measure quantifies the diversity of orderings of 

symbols derived from a scalar time series ��
�
�
�	�	�

�
 by reordering the amplitude values (Bandt, 

Pompe, 2002; Staniek, Lehnertz, 2007). The permutation entropy of order � ≥ 2 is defined as 
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where the sum runs over all n! permutations � of order n; ���� – the relative frequency of 

permutations. Permutation entropy is the Shannon entropy of n distinct symbols: 

0 ≤ ���� ≤ ln�! /�� − 1�,   (19) 

where the lower bound is attained for an increasing or decreasing sequence of values, and the 

upper bound for a completely random system (independent and identically distributed – i. i. d. 

sequence) where all n! possible permutations appear with the same probability. Permutation 

entropy is an appropriate complexity measure for chaotic time series, in particular in the 

presence of dynamical and observational noise. Permutation entropies can be calculated for 

arbitrary real-world time series with a weak stationarity assumption (Bandt, Pompe, 2002). Since 

the method is extremely fast and robust, it seems preferable when there are huge data sets and no 

time for preprocessing and fine-tuning of parameters (Staniek, Lehnertz, 2007). 

Base-Scale Entropy. First the time series are embedded in a d-dimensional space by Eq. 

For each d-dimensional vector, the base scale ��
��
� is calculated by defining the base scale as 

the root mean square of the differences between every two contiguous data points in a d-

dimensional vector (Li, Ning, 2006) 
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nonstationary, and noisy data series, so the base-
scale entropy can be directly applied to real-world 
time series (Li, Ning, 2006).

Lempel-Ziv (LZ) algorithm. LZ complexity 
analysis is based on a coarse-graining of the 
measurements, so before calculating the complexity 
measure, the signal must be transformed into a 
finite symbol sequence (commonly into a 0–1 
sequence) – the median, average and clusters 
conversion methods are used. LZ complexity 
is related to the number of distinct substrings 
and the rate of their recurrence along the given 
sequence, with larger values corresponding to 
more complexity in the data (Abasolo et al., 2006; 
Radhakrishnan et al., 2000). It is a nonparametric, 
simple-to-calculate measure of complexity in a 
one-dimensional signal that does not require long 
data segments to compute.

DISCUSSION AND  
CONCLUDING  

REMARKS

It is simple (and tempting) to borrow one of 
the developed appreoaches from another field 
that shares “key words” (Hristovski et al., 2010; 
Latash et al., 2010). This can provide tools that 
may help to find answers to questions after the 
questions have been formulated. The application 
of complex systems theory to sports is relatively 
new. Complex systems are well represented 
in their universal features by biological, 
evolutionary systems and that means that we 
can observe classes of behavior and transitions 
between those types of behavior that do not 
depend on the details of the system that is studied 
(Mayer, 2001). The methods applying to human 
data analysis are very important because many 
crucial variables are not directly measurable 
or even identifiable (Torrents, Balagué, 2006; 
Latash et al., 2010; Poderys et al., 2010).  All the 
above-named and other algorithms of complexity 
measuring are used to compute the regularity of 
time series and classify the time series as being 
of one type or another on this basis. Entropy-
based regularity and complexity measures have 

been highly effective in analyzing a broad range 
of physiological signals (Karmakar et al., 2012). 
In many biological applications, they have been 
used to distinguish “healthy” from “unhealthy” 
biological signals or may serve as a non-invasive, 
objective means of determining physiological 
changes under steady or non-steady state 
conditions such as competition or acute clinical 
pathologies. As an extension of these applications, 
the problem of continuous health monitoring is 
considered, where the time series is not a fixed 
and complete set, but is “streaming.” If we can 
associate a change in signal complexity with a 
change in the health of the system, then we might 
hope that entropy like measure might detect a 
developing problem (and possibly provide some 
warning before system failure) (Goldberger et al., 
2002; Hristovski, Balagué, 2010). The choice of 
the particular entropy estimator is determined 
by the goal type, the capability of estimators in 
characterizing the constraints on a physiological 
time series, its robustness to noise considering the 
above-mentioned advantages and disadvantages 
of particular algorithms.

There is a fundamental problem with the 
scientific approach in that it requires abstraction 
and simplification in order to be formalized in a 
mathematical model. The process of simplification 
and abstraction has been extremely successful 
in describing the physical world but up to now 
it is not so clear if the same analytical approach 
could be always successfully applied to living 
objects (Mayer, 2001; Torrents, Balagué, 2006). 
For example, multiscale entropy has been widely 
used to quantify a system’s complexity by taking 
into account the multiple time scales inherent in 
physiologic time series (Blasco-Lafarga et al., 
2010; Hu, Liang, 2012). The multiscale analysis 
of physiologic time series such as the RR interval 
time series has revealed that the entropy differs 
according to the scale (Cysarz et al., 2011). It is 
difficult to apply analytical solutions in analysis of 
behavior of living, learning, and evolving systems 
and new approaches and solutions remain on the 
agenda. 
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FIZIOLOGINIŲ LAIKO EILUČIŲ KOMPLEKSIŠKUMO  
ĮVERČIŲ APŽVALGA

Kazimieras Pukėnas, Jonas Poderys, Remigijus Gulbinas
Lietuvos kūno kultūros akademija, Kaunas, Lietuva

SANTRAUKA
Tyrimo pagrindimas ir hipotezė. Kompleksinių sistemų teorija teikia naujų galimybių tyrėjams moksliniu 

požiūriu vertinti organizmą, biologinių ar kitų besivystančių sistemų ypatybes. Pastaraisiais metais fiziologinių laiko 
eilučių kompleksiškumo įvertinimui pasiūlyta didelė metodų įvairovė. Entropijos vertinimo metodai vis plačiau 
taikomi fiziologinių laiko eilučių tyrinėjimų metu norint išreikšti kiekybinį jų sudėtingumą.

Tikslas – pateikti tyrėjams populiariausių kompleksiškumo įverčių (entropijos), taikomų biologijos, medicinos, 
sporto mokslų srityje, apžvalgą.

Rezultatai. Apžvalgoje supažindinama su populiariausais kompleksiškumo vertinimo metodais (imties 
entropijos (angl. Sample Entropy), kontrolės entropijos (angl. Control Entropy), spektro entropijos (angl. Spectral 
Entropy), vilnelių entropijos (angl. Wavelet Entropy), dekompozicijos singuliarinėmis reikšmėmis entropijos (angl. 
Singular-Value Decomposition Entropy), perstatinių entropijos (angl. Permutation Entropy), pagrindinės skalės 
entropijos (angl. Base-Scale Entropy), entropijos pagal Lempel-Ziv algoritmą (angl. Entropy based on Lempel-Ziv 
algorithm)), apibūdinami pagrindiniai jų ypatumai ir taikymo sritys.

Aptarimas ir išvados. Įvairūs entropijos vertinimai gali būti taikomi tyrinėjant sudėtingų kompleksinių, 
adaptatyvių sistemų elgsenos ypatybes, tačiau pasirenkant vertinimo būdą svarbu atsižvelgti į pasirinkto algoritmo 
pranašumus ir trūkumus, vertinamo proceso (laiko eilučių) ypatybes.  Analitiniai gyvų sistemų tyrinėjimai yra 
pakankamai sudėtingas uždavinys, todėl naujų požiūrių ir sprendimų paieška tebelieka aktualiu  nūdienos mokslų 
uždaviniu.

Raktažodžiai: fiziologinės laiko eilutės, kompleksiškumas, entropija.
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